Каким способом уменьшают частоту вращения ротора генератора для чего это необходимо
Большая Энциклопедия Нефти и Газа
ВО, соединенная последовательно с обмоткой возбуждения ОБ и противодействующая обмотке ШО. При работе регулятора напряжения при повышении частоты вращения ротора генератора сила тока в обмотке возбуждения ОВ уменьшается и соответственно ослабевает противодействие, оказываемое выравнивающей обмоткой ВО основной обмотке ШО. Благодаря этому компенсируется уменьшение среднего напряжения на обмотке ШО и обеспечивается постоянство регулируемого напряжения при изменении частоты вращения ротора генератора. [47]
Напряжение генератора измеряют вольтметром. Частота вращения ротора генератора в этот момент равна начальной частоте вращения в режиме холостого хода. Частоту вращения ротора генератора измеряют либо непосредственно ручным тахометром, либо тахометром, встроенным в переносный прибор или передвижной стенд. В последнем случае необходимо учесть, что встроенный электроимпульсный тахометр измеряет частоту вращения не ротора генератора, а коленчатого вала двигателя. [57]
При повышении частоты вращения ротора генератора регулятор поддерживает напряжение на заданном уровне за счет увеличения продолжительности разомкнутого состояния контактов К. Наступает момент, когда продолжительность замкнутого состояния становится равной нулю и контакты К. При дальнейшем повышении частоты вращения ротора генератора возрастающее напряжение еще более усиливает магнитное притяжение якорька, в результате чего якорек притягивается к сердечнику до упора, замыкая контакты К. [58]
Регулировка оборотов электродвигателя 220В, 12В и 24В
Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.
Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.
Простейший вариант
Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.
Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.
Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.
Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.
В цепи якоря
Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.
Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.
Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.
В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.
Для низкого напряжения
Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.
Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.
Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.
Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.
Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.
Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.
Есть еще один вариант, только это уже не для 12, а для 24в питания.
Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.
От сети
Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.
Коллекторные машины
Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.
Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.
Если есть подходящий ЛАТР, можно все это делать при помощи его.
Двухфазный двигатель
Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.
Есть две возможности контролирования числа оборотов:
Такие агрегаты широко распространены в быту и на производстве.
Обычные асинхронники
Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.
Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.
Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.
Выбираем устройство
Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.
Прибор триак
Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.
Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.
С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.
Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.
Преобразователи на электронных ключах
Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.
Тиристор, работает в сети переменного тока.
Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.
Схема стабилизатора постоянного тока
Зарядное устройство 24 вольт на тиристоре
Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.
Процесс пропорциональных сигналов
Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.
Микросхема TDA 1085
Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.
Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.
Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.
При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.
Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!
Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.
Измерения
Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.
Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.
Регулирование частоты вращения асинхронного электродвигателя
Подписка на рассылку
Рисунок 1. Асинхронный двигатель Асинхронный двигатель (рис. 1) имеет неподвижную часть, которая называется статор, и вращающуюся часть, именуемую ротором. Магнитное поле создается в обмотке, размещенной в статоре. Такая конструкция электродвигателя позволяет регулировать частоту его вращения различными способами.
Основные технические характеристики, учитываемые при изменении частоты вращения
При регулировании частоты вращения асинхронных электродвигателей следует учитывать несколько основных технических показателей, которые в значительной мере влияют на процесс работы двигателей.
Есть несколько способов регулирования частоты вращения электродвигателя:
Регулирование частоты вращения изменением частоты питающей сети
Регулирование частоты вращения путем изменения частоты в питающей сети считается одним из самых экономичных способов регулирования, который позволяет добиться отличных механических характеристик электропривода. Когда происходит изменение частоты питающей сети, частота вращения магнитного поля также меняется.
Преобразование стандартной частоты сети, которая составляет 50 Гц, происходит за счет источника питания. Одновременно с изменением частоты происходит и изменение напряжения, которое необходимо для обеспечения высокой жесткости механических характеристик.
Регулирование частоты вращения позволяет добиться различных режимов работы электродвигателя:
В качестве источника питания для регулирования могут использоваться электромашинные вращающиеся преобразователи, а также статические преобразователи частоты, которые работают на полупроводниковых приборах, серийно выпускающихся промышленностью.
Несомненным преимуществом частотного регулирования является наличие возможности плавно регулировать частоту вращения в обе стороны от естественной характеристики. При регулировании достигается высокая жесткость характеристик и отличная перегрузочная способность.
Регулирование частоты вращения изменением числа полюсов
Регулирование частоты вращения путем изменения числа полюсов происходит за счет изменения частоты вращения магнитного поля статора. Частота питающей сети остается неизменной, в то время как происходит изменение частоты вращения магнитного поля и частоты вращения ротора. Они меняются обратно пропорционально числу полюсов. Например, число полюсов равно 2, 4, 6, 8, тогда обороты двигателя при изменении их количества будут составлять 3000, 1500, 1000, 750 оборотов в минуту.
Двигатели, которые обеспечивают переключение числа пар полюсов, имеют обычно короткозамкнутый ротор с обмоткой. Благодаря этому ротору обеспечивается возможность работы двигателя без дополнительных пересоединений в цепи.
Изменение частоты вращения включением в цепь ротора с реостатом
Еще одним способом изменения частоты вращения двигателя является включение в цепь ротора с реостатом. Такой метод имеет существенное ограничение, так как может быть применен только для двигателей с фазным ротором. Он обеспечивает плавное изменение частоты вращения в очень широких пределах. Минусом же являются большие потери энергии в регулировочном реостате.
Изменение направления вращения
Изменение направления вращения двигателя может быть осуществлено за счет изменения направления вращения магнитного поля, которое создается обмотками статора. Изменение направления вращения можно достичь, изменив порядок чередования тока в фазах обмотки статора.
Регулирование частоты и напряжения асинхронного генератора.Регулирование изменений
Общие проблемы регулирования асинхронного генератора
При оценке общих показателей автономного асинхронного генератора необходимо учитывать существенное изменения напряжения такие эксплуатационные факторы, как изменение частоты генерируемого
напряжения, которая варьирует с изменением нагрузки и скольжения, если частота вращения ротора поддерживается постоянной, а также колебания выходного напряжения U, появляющиеся вследствие электрической и магнитной несимметрии ротора.
Пульсации напряжения, обусловленные электрической не симметрией, возрастают при увеличении нагрузки и могут быть сведены к минимуму при качественной заливке короткозамкнутой клетки и выбраковке роторов с дефектами обмотки.
Магнитная несимметричность, связанная с возможной овальностью пакетов ротора и статора, эксцентриситетом, магнитной анизотропией сердечников, приводит к периодическим изменениям магнитного сопротивления на пути основного магнитного ротора и, как следствие, к колебаниям выходного напряжения. Устранение овальности и веерная сборка пакета ротора практически полностью исключают эту причину колебаний напряжения.
При оценке технико-экономических показателей автономного асинхронного генератора учитывается также необходимость в конденсаторной батарее как источнике реактивной мощности для создания магнитного ноля и компенсации реактивности нагрузки.
Значение реактивной мощности, затрачиваемой на создание магнитного поля асинхронного генератора с магнитной индукцией в зазоре Вт, определяется из соотношения может регулироваться или изменением емкости конденсаторов Ск, или же величиной напряжения Uc.
[adsense_id=»1″]
В настоящее время практическое применение находят конденсаторы типа К-71 с улучшенными массогабаритными показателями, имеющими удельную массу 0,3 — 0,6 кг/кВА. Если учесть, что cos
На рис. 5.30 приведены зависимости емкости С от относительной частоты вращения n2/n ном. при поддержании неизменным стабилизированного напряжения асинхронного генератора мощностью 4,5 кВт при работе в режиме холостого хода. Как видно, подбор необходимой емкости пришлось выполнять, исходя из соотношений:
Из этих соотношении следует, что при значениях скорости вращения ротора п2 стабилизации напряжения при изменении нагрузки в пределах (0,5…1,25)Р„ необходимо использовать 25…30% плошади паза, что должно быть предусмотрено при проектировании.
[adsense_id=»1″]
Следует отметить, что это не приводит к существенному увеличению габаритов асинхронного генератора, однако сопровождаемся искажением кривой ноля в воздушном зазоре и соответствующими искажениями в кривой напряжения даже при синусоидальном распределении МДС.
Схема автоматического регулирования напряжения и частоты асинхронного генератора на варикондах (рис. 5.31),
которая работам следующим образом.Измерители частоты и напряжения ИЧ и ИН фиксируют отклонение этих параметров or номинальных значений и формируют сигналы на усилители УЭ и УБ, которые затем выпрямляются и после преобразования подаются на вариконды. Вариконды в зависимости oт величины управляющего сигнала увеличивают или уменьшают емкостный ток возбуждения, стабилизируя напряжение на выходе регулируемого асинхронного генератора. На выходе канала частоты ИЧ-УБ установлен серводвигатель СД, частота вращения,которого изменяется и воздействует на регулятор оборотов приводного двигателя ПД.На рис. 5.32 приведена схема регулирования, построенная на применении бесконтактных тиристорных ключей БТК, управляемых вычислительным элементом и подключающих отдельные секции батареиконденсаторов С1.С2…Сп в зависимости от изменения напряжения регулируемого асинхронного генератора.
Вычислительное устройство включает в себя суммирующее устройство СУ, формирующее сигнал по отклонению напряжения, импульсный элемент ИЭ, к спорый преобразует этот сигнал в импульсный и передает на вычислительный элемент ВЭ, суммирующий импульсы с учетом знака отклонения и обеспечивающий определенный закон регулирования напряжения.
Преобразованный таким образом сигнал поступает на ступенчатый преобразователь и далее — на ВТК.
Применение варикондов в системах регулирования асинхронного генератора привлекательно еще одним замечательным свойством — высоким сопротивлением постоянному току, что позволяет управлять их емкостью с ничтожно малой величиной мощности канала управления.
В работе описана такая схема (рис. 5.33) регулирования варикондов постоянным напряжением, пропорциональным — разности заданного и фактического напряжения в предположении, что нагрузка регулируемого асинхронного генератора остается неизменной, а частота его вращения меняется.Датчик частоты вращения 1 индукционного типа формирует высокочастотный сигнал (60 кГц) с частотой срывов, пропорциональной частоте вращения регулируемого асинхронного генератора. В преобразователе 2 сигнал прямоугольной формы преобразуется в импульсы со строго определенной длительностью и параметров этих импульсов (пауз) меняется в зависимости от временных среднее значение тока и, последовательно, напряжение на входе и выходе формирователя 5 сигнала
управления варикондами.
Для регулирования напряжения весьма эффективным может быть использование трансформатора
с переменным коэффициентом трансформации. На рис. 5.34 приведена схема стабилизации, построенная на изменении напряжения на конденсаторах возбуждения.
Если конденсаторы возбуждения включать на повышающую обмотку трансформатора с переменным коэффициентом трансформации к, можно уменьшить их габариты и массу. При обычной частоте (50 Гц) масса и габаритные размеры трансформатора оказываются весьма значительными.
Кроме того, для компенсации реактивного тока самого трансформатора требуются дополнительно емкости конденсаторов.Регулировать выходное напряжение асинхронного генератора можно также включением насыщающего реактора (L) (рис. 5.35).
При уменьшении напряжения генератора, связанного с увеличением нагрузки, насыщение реактора уменьшается, а его индуктивность увеличивается. Это приводит к уменьшению индуктивного тока и, как следствие, к увеличению напряжения регулируемого реактора. Как и в предыдущей схеме, в данном случае также необходимо предусматриваю» увеличение емкости конденсаторов.В качестве асинхронного генератора могут успешно применяться асинхронные машины с фазным ротором. При этом возможны следующие варианты включения:
1. Конденсаторы возбуждения включаются на зажимы статорной обмотки, параллельно нагрузке. Реостат через контактные кольца подключается к фазному ротору. Стабилизация частоты достигается одновременным изменением емкости конденсаторов и активного сопротивления реостата.
2. Конденсаторы возбуждения включаются в цепь фазного ротора, нагрузка — в цепь статора. Стабилизация частоты осуществляется изменением емкости конденсаторов возбуждения.
3. Конденсаторы возбуждения включаются в цепь статора или ротора через трансформатор или автотрансформатор с переменным коэффициентом трансформации (рис. 5.36). Регулирование частоты обеспечивается изменением коэффициента трансформации, при этом конденсаторы возбуждения включаются во вторичную цепь повышающего трансформатора,что значительно уменьшает необходимую емкость конденсаторов.[adsense_id=»1″]
Регулирование скорости асинхронного двигателя
Наиболее распространены следующие способы регулирования скорости асинхронного двигателя : изменение дополнительного сопротивления цепи ротора, изменение напряжения, подводимого к обмотке статора, двигателя изменение частоты питающего напряжения, а также переключение числа пар полюсов.
Регулирование частоты вращения асинхронного двигателя путем введения резисторов в цепь ротора
Из рис. 1 следует, что при увеличении сопротивления в цепи ротора при том же моменте частота вращения вала двигателя уменьшается.
Регулирование частоты вращения асинхронного двигателя изменением напряжения на статоре
При регулировании частоты вращения асинхронного двигателя изменением напряжения, подводимого к обмотке статора, критический момент М кр асинхронного двигателя изменяется пропорционально квадрату подводимого к двигателю напряжения U рет (рис. 3 ), а скольжение от U рег не зависит.
Рис. 1. Механические характеристики асинхронного двигателя с фазным ротором при различных сопротивлениях резисторов, включенных в цепь ротора
Рис. 2. Схема регулирования скорости асинхронного двигателя путем изменения напряжения на статоре
Рис. 3. Механические характеристики асинхронного двигателя при изменении напряжения подводимого к обмоткам статора
Если момент сопротивления рабочей машины больше пускового момента электродвигателя (Мс > Мпуск), то двигатель не будет вращаться, поэтому необходимо запустить его при номинальном напряжении Uном или на холостом ходу.
Регулировать частоту вращения короткозамкнутых асинхронных двигателей таким способом можно только при вентиляторном характере нагрузки. Кроме того, должны использоваться специальные электродвигатели с повышенным скольжением. Диапазон регулирования небольшой, до n кр.
Для изменения напряжения применяют трехфазные автотрансформаторы и тиристорные регуляторы напряжения.
Регулирование частоты вращения асинхронного двигателя изменением частоты питающего напряжения
Так как частота вращения магнитного поля статора n о = 60 f /р, то регулирование частоты вращения асинхронного двигателя можно производить изменением частоты питающего напряжения.
Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту питающего напряжения, можно в соответствии с выражением при неизменном числе пар полюсов р изменять угловую скорость n о магнитного поля статора.
Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.
Для получения высоких энергетических показателей асинхронных двигателей (коэффициентов мощности, полезного действия, перегрузочной способности) необходимо одновременно с частотой изменять и подводимое напряжение. Закон изменения напряжения зависит от характера момента нагрузки Мс. При постоянном моменте нагрузки напряжение на статоре должно регулироваться пропорционально частоте.
Схема частотного электропривода приведена на рис. 5, а механические характеристики АД при частотном регулировании — на рис. 6.
Рис. 5. Схема частотного электропривода
Рис. 6. Механические характеристики асинхронного двигателя при частотном регулировании
С уменьшением частоты f критический момент несколько уменьшается в области малых частот вращения. Это объясняется возрастанием влияния активного сопротивления обмотки статора при одновременном снижении частоты и напряжения.
Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.
Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока.
Силовой трехфазный импульсный инвертор содержит шесть транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.
В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями. Регулирование выходной частоты I вых и выходного напряжения осуществляется за счет высокочастотной широтно-импульсной модуляции.
Регулирование частоты вращения асинхронного двигателя переключение числа пар полюсов
Ступенчатое регулирование скорости можно осуществить, используя специальные многоскоростные асинхронные двигатели с короткозамкнутым ротором.
Из выражения n о = 60 f /р следует, что при изменении числа пар полюсов р получаются механические характеристики с разной частотой вращения n о магнитного поля статора. Так как значение р определяется целыми числами, то переход от одной характеристики к другой в процессе регулирования носит ступенчатый характер.
Существует два способа изменения числа пар полюсов. В первом случае в пазы статора укладывают две обмотки с разным числом полюсов. При изменении скорости к сети подключается одна из обмоток. Во втором случае обмотку каждой фазы составляют из двух частей, которые соединяют параллельно или последовательно. При этом число пар полюсов изменяется в два раза.
Регулирование скорости путем изменения числа пар полюсов экономично, а механические характеристики сохраняют жесткость. Недостатком этого способа является ступенчатый характер изменения частоты вращения асинхронного двигателя с короткозамкнутым ротором. Выпускаются двухскоростные двигатели с числом полюсов 4/2, 8/4, 12/6. Четырехскоростной электродвигатель с полюсами 12/8/6/4 имеет две переключаемые обмотки.
Использованы материалы книги Дайнеко В.А., Ковалинский А.И. Электрооборудование сельскохозяйственных предприятий.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: